Modular perverse sheaves on flag varieties II: Koszul duality and formality

نویسندگان

  • Pramod Achar
  • Simon Riche
  • PRAMOD N. ACHAR
چکیده

Building on the theory of parity sheaves due to Juteau–Mautner– Williamson, we develop a formalism of “mixed modular perverse sheaves” for varieties equipped with a stratification by affine spaces. We then give two applications: (1) a “Koszul-type” derived equivalence relating a given flag variety to the Langlands dual flag variety, and (2) a formality theorem for the modular derived category of a flag variety (extending the main result of [RSW]).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Koszul Duality and Mixed Hodge Modules

We prove that on a certain class of smooth complex varieties (those with “affine even stratifications”), the category of mixed Hodge modules is “almost” Koszul: it becomes Koszul after a few unwanted extensions are eliminated. We also give an equivalence between perverse sheaves on such a variety and modules for a certain graded ring, obtaining a formality result as a corollary. For flag variet...

متن کامل

Koszul Duality for Toric Varieties

We show that certain categories of perverse sheaves on affine toric varieties Xσ and Xσ∨ defined by dual cones are Koszul dual in the sense of Beilinson, Ginzburg and Soergel [BGS]. The functor expressing this duality is constructed explicitly by using a combinatorial model for mixed sheaves on toric varieties.

متن کامل

Modular perverse sheaves on flag varieties I: tilting and parity sheaves

In this paper we prove that the category of parity complexes on the flag variety of a complex connected reductive group G is a “graded version” of the category of tilting perverse sheaves on the flag variety of the dual group Ǧ, for any field of coefficients whose characteristic is good for G. We derive some consequences on Soergel’s modular category O, and on multiplicities and decomposition n...

متن کامل

Perverse Sheaves and Ic-modules. the Koszul Case

For a stratified topological space we introduce the category of (mixed) IC-modules which are linear algebra devices with the relations described by the equation d = 0. We prove that the category of (mixed) IC-modules is equivalent to the category of (mixed) perverse sheaves for flag varieties.

متن کامل

Modular perverse sheaves on flag varieties III: positivity conditions

We further develop the general theory of the “mixed modular derived category” introduced by the authors in a previous paper in this series. We then use it to study positivity and Q-Koszulity phenomena on flag varieties.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014